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Fig. 3. Tuning range.

V. CONCLUSION AND FURTHER DISCUSSION

The distribution of the coupling between a DR operating in the
TE01� mode and microstrip lines has been studied in this paper. Using
a finite-element field calculation at the resonant frequency, equivalent
multisection circuit parameters were derived. The distributed- and
lumped-coupling models are compared with measured results from
a test circuit. The distributed model with a predicted tuning range of
23 MHz is in close agreement with the measured range of 20 MHz.
The advantage of the distributed model is clear when the range from
the lumped model is considered at 89 MHz.
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Rapidly Converging Direct Singular Integral-Equation
Techniques in the Analysis of Open Microstrip Lines

on Layered Substrates

J. L. Tsalamengas

Abstract—In this paper, moment-method-oriented direct singular inte-
gral-equation techniques are used for the exact analysis of planar layered
microstrip lines. While these techniques retain the simplicity of the conven-
tional method of moments, they optimize them by evaluating all matrix ele-
ments via rapidly converging real-axis spectral integrals. The proposed al-
gorithms yield highly accurate results for the dispersion characteristics and
for the modal currents both of the fundamental and higher order modes.

Index Terms—Integral equations, layered media, planar transmission
lines.

I. INTRODUCTION

Shown in Fig. 1 is the geometry of an open generalized microstrip
line. All layers—described by the scalars("i; �i; ki = !

p
"i�i)—are

taken to be linear, homogeneous, and isotropic, whereas the semi-in-
finite regionsm + 1 and�n � 1 may be perfect electric conductors
(PECs), perfect magnetic conductors (PMCs), or dielectrics. Here, the
worst case is considered, where the strip is placed at(y = 0; �w �
x � w; �1 < z < +1) right on the interface between two adjacent
layers. It is known [1], [2] that, in this (worst) case, several exponen-
tially decaying factors, which ensure convergence of the conventional
spectral Green’s dyads, disappear, leaving us with slowly converging
spectral integrals. Proper handling of these integrals will be carried out
most efficiently in Section III.

In connection with this structure, the three-dimensional (3-D) ex-
citation problem for an arbitrarily polarized obliquely incident plane
wave has been treated in [3]. Here, we solve the spectral (propaga-
tion) problem. Since the analysis is the same for both problems, only a
brief outline will be given here, referring to [3] for details. The corre-
sponding generalized microslot-line problem has been recently treated
in [4] along parallel lines.

The analysis begins with the system of integral equations (rather in-
convenient) derived in the context of conventional method of moments
(MoM) by the immittance approach. The next crucial step is to recast
this system into a 2� 2 system of first-kind singular integral/integrod-
ifferential equations (SIE/SIDE). Most advantageously, the new ker-
nels consist of: 1) several closed-form (Hankel) singular terms and 2)
rapidly converging real-axis spectral integrals. With the help of some
basic algorithms developed in [5], the solution of the final SIE/SIDE
leads to matrix elements, the representations of which converge very
rapidly.

II. A NALYSIS

Assuming propagation in the�z-direction and following the immit-
tance approach, the surface current density on the stripJ = [Jx(x)x̂+
Jz(x)ẑ]e

j(!t+�z) is found to satisfy the system of integral equations

<(Z1; Z2; x) = 0 <(Z2; Z3; x) = 0 (jxj � w) (1)
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Fig. 1. Geometry of the problem.

where< is the shorthand symbol for

<(Zi; Zj ; x) � 1

2�

w

�w

dx0
1

�1

e�ju(x�x )

� Zi(u)Jx(x0) + Zj(u)Jz(x
0) du: (2)

Here,

Zj(u) = Zj(u; 	
e; 	h)

(j = 1; 2; 3) are given by [3, eq. (7)] in terms of the quantities

	e = Y e(0+)� Y e(0�) 	h = Y h(0+)� Y h(0�) (3)

whereY q(y) � Y q(u; y) (q � e; h) are the admittances of theLSEy

andLSMy waves supported by the layered dielectric medium in the
absence of the strip.Y q(0+) andY q(0�) may be recursively evalu-
ated, as explained in [3, App. A].

A. Discretization of (1) by Conventional MoM

We setx = wt; x0 = wt0 (�1 � t; t0 � 1) and expand

Jz x(t) =Fz(t)
p
1� t2; Fz(t) =

1

N=0

aNTN (t) (4a)

Jx x(t) =Fx(t)
p
1� t2; Fx(t) =

1

N=0

bNUN (t) (4b)

whereTN andUN are the Chebyshev polynomials andaN and bN
are expansion constants. Inserting (4a) and (4b) into the first and
second equations of (1), multiplying the first and second equations
of (1), respectively, by

p
1� t2UM (t) and by TM (t)=

p
1� t2

(M = 0; 1; 2; . . .), and integrating fromt = �1 to t = 1 yields the
infinite linear algebraic system

1

N=0

Kzz
MN Kzx

MN

Kxz
MN Kxx

MN

aN

bN
=

0

0
; M = 0; 1; 2; . . . ;1:

(5)

Here,

Kxx
MN = I11MN(Z1)d

+
MN

Kxz
MN =�Kzx

NM

= I10MN(Z2) d
�

MN

Kzz
MN = I00MN(Z3) d

+
MN (6)

d�MN = 1� (�1)M+N 2 (7)

whereImnMN(Zj) (m; n = 0; 1; j = 1; 2; 3) are the following spectral
integrals

ImnMN(Zj) = ��w(�1)MjM+N(M + 1)m(N + 1)n

�
1

0

Zj(u)
JM+m(wu)

(wu)m
JN+n(wu)

(wu)n
du (8)

with Jn denoting the Bessel function of ordern. The dispersion equa-
tion of the problem results by setting the determinant of the system (5)
to zero.

It may be verified thatZj(u) vary asjuj2�j (j = 1; 2; 3) when
u! �1. Therefore, the integralsImnMN(Zj) converge slowly, asu�2.
As a consequence, it is difficult to obtain a high accuracy on the basis
of (5) and (6) for the modal electric currents and for the propagation
constant. This is true, in particular, for high-order modes, necessary
when studying, for example, microstrip discontinuities. To overcome
these difficulties, a singularity extraction procedure is applied in the
following section. An alternative efficient spectral-domain technique
has been developed in [6].

III. SINGULARITY EXTRACTION

To recast (1) into a convenient form, we use the decompositions [3]

1

	q(u)
=

1

yq1 + yq0
+ P q(u); q � e; h

Zj(u) = �j(u) + Z(j)(u); j = 1; 2; 3 (9)

where

�j(u) =Zj u; ye1 + ye0; y
h
1 + yh0

Z(j)(u) =Zj u;
1

P e
;

1

P h
(10)

yei = � j!"i=
i

yhi =�j
i=(!�i)

i =(u2 � �2i )

1=2

�2i � k2i � �2 ��

2
< arg(
�n�1) � �

2
;

��

2
< arg(
m+1) � �

2
: (11)

It may be verified thatP q(u) andZ(j)(u) decay very strongly (ex-
ponentially) asu ! �1, whereas�j(u) continue to vary asjuj2�j ,
which is rather inconvenient. Proper handling of the inverse Fourier in-
tegrals 1

�1
�j(u)e

�ju(x�x ) du, as described in [3], leads to the fol-
lowing system of SIE/SIDE:

<(R1; R2; x)+ k2A
d2

dx2
+ k2C =(1)

x (x)

+ k2B
d2

dx2
+ k2D =(2)

x (x)

+ j�
d

dx
k2A=(1)

x (x) + k2B=(2)
x (x) = 0

(12a)

<(R2; R3; x)+ j�
d

dx
k2A=(1)

x (x) + k2B=(2)
x (x)

� TA=(1)
x (x)� TB=(2)

x (x) = 0 (12b)

(jxj � w). Here, the notation

=(1)
p (x) �

w

�w

Jp(x
0)H

(2)
0 (�1jx� x0j) dx0

=(2)
p (x) �

w

�w

Jp(x
0)K(jx� x0j) dx0 p � x; z (13)
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has been used with

K jx� x0j =
1

�21 � �20

1

s=0

(�1)s�2s

� H
(2)
0 �sjx� x0j +H

(2)
2 �sjx� x0j

(14)

(H(2)
0 and H

(2)
2 being Hankel functions). The quantitiesRj

(j = 1; 2; 3) (rapidly converging functions of the spectral variableu),
k2A; k

2
B ; k

2
C ; k

2
D, TA, andTB are defined in [3, App. B].

A. Discretization of (14) using DSIET

The discretization of (14) will be based on two of the direct singular
integral-equation techniques (DSIETs) developed in [4] as follows.

Method A: This method, outlined in [4, Sec. III], yields for the ma-
trix elements in (5) the expressions

Kxx
MN = �I11MN(R1) +

1

w

� k2AD
(1)
MN

k2C
k2A

; �1w

+ k2BD
(2)
MN

k2D
k2B

; �1w; ��1w d+MN

(15a)

Kxz
MN = �Kzx

NM

= � I10MN(R2) + j� k2AC
(1)
MN(�1w)

+k2BC
(2)
MN(�1w; ��1w) d�MN

(15b)

Kzz
MN = � I00MN(R3)� w TAA

(1)
MN(�1w) + TBA

(2)
MN

� (�1w; ��1w) d+MN (15c)

whereF qMN (F � A; B; C; D; q � 1; 2) are given in a computa-
tionally efficient form in [4]. The spectral integralsImnMN(Rj), which
have to be evaluated numerically, converge asu�6, i.e., very rapidly.
Finally, let us assume that each of the series in (4a) and (4b) is truncated
atN = Nr . By embodying several symmetry relations, as explained
in [4], it may then be shown that(Nr + 1) � (Nr + 2) integrations
suffice in order to fill up all the4(Nr+1)2 matrix elements. The above
features considerably add to the efficiency of the algorithm.

Method B: This method, outlined in [4, Sec. V], ends up with the
linear algebraic system of

L

n=1

~Rzzmn ~Rzxmn

~Rxzmn ~Rxxmn

cn
dn

=
0

0
; n = 1; 2; . . . ; L (16)

with unknowns the quantities

cn �Fz(tn)

dn �Fx(t̂n); n = 1; 2; . . . ; L (17)

tn = cos
(2n� 1)�

2L

t̂n = cos
n�

L+ 1
: (18)

The integerL, determining the matrix size2L � 2L, is as large as
needed to ensure convergence of the algorithm. The matrix elements
~Rzzmn in (16), as given in [3, eq. (28)], involve: 1) the spectral integrals
Jq(t; � ;Rj) (q � a; b; j = 1; 2; 3), which are defined in [3, eq. (20)]
and converge uniformly, as1=juj3+j and 2) the quantities~F (q)

mn (F �
A;B; C; D; q = 1; 2) of [4], which are given either in closed form or
in terms of simple single series. These important features considerably
enhance the efficiency of algorithm B.

In terms of {cn; dn}, the modal electric current density on the strip
may be found via [3, eq. (21)].

IV. NUMERICAL RESULTS ANDVALIDATION OF THE ALGORITHMS

To validate the proposed algorithms (methods A and B), exhaustive
comparisons of their corresponding results have been carried out along
with comparisons with results available from [7]–[12].

Table I concerns an open microstrip line (like that depicted in the
insets of Fig. 2 (ford0 ! 1) or Fig. 3) of relative dielectric constant
"r = 8. Highly accurate results are shown for the effective dielectric
constant"e� = (�=k0)

2, as computed by both method A (for several
truncation sizes,N = 1� 6) and method B. Here, both a narrow strip
(2w=d = 0:1) and a wide one (2w=d = 1:0) are considered for several
values ofd=�0 (d = substrate thickness,�0 = free-space wavelength).
As seen, the convergence of method A is extremely rapid and stable.
In the case2w=d = 0:1, the results obtained by method B are in exact
agreement with those of method A. The agreement between these two
independent methods is excellent for the case2w=d = 1 as well. In
both cases, results reported in [7]–[10] are also included for the sake of
comparison. Inspection reveals that, for narrow strips, our results are
in excellent agreement with those of [7] and [8]. In contrast, for wide
strips, our results are in excellent agreement with those of [9].

Fig. 2 shows"e� of a shielded microstrip line for several parameter
values. These results are indistinguishable from [11, Fig. 4(a)]. The
results of [11, Fig. 3(a)] have been also reproduced exactly using both
our methods (not shown).

The proposed algorithms can be most efficiently used to study higher
order modes as well. This is exemplified in Table II, where�=k0 is
shown for the three consecutive modes of an open microstrip line (see
the inset of Fig. 3) with parameters2w = 3 mm,d = 0:635 mm, and
"r = 9:8. Analogous results pertaining to this same structure have been
most recently published in [12] based on the mixed-potential integral
equation combined with complex image theory. As seen, the results of
our methods A and B are in excellent agreement to each other. These re-
sults are also in very good agreement with those of [12] for the first and
second modes. For the third mode, in contrast, our results deviate (up
to 4.9%) from those of [12]. To resolve the dilemma posed by these dis-
crepancies, we turn to an idea presented in [13, Sec. 4.9] and consider
the microstrip line, which results after imposing perfectly conducting
electric sidewalls atx = �A. This new (modified) structure can be
independently studied using Fourier series (thus avoiding any numer-
ical integration) with extremely high accuracy by extending the pow-
erful techniques recently presented in [14]. For A large enough (e.g.,
A > 15 max(d; w) as suggested in [13]), the sidewalls have negli-
gible effect on the characteristics of the microstrip line. As a matter of
fact, the results for the modified microstrip line (forA = 30d, using six
basis functions for each ofJx andJz)—shown also in Table II (rows
labeled “MS”)—are found to coincide (to within six significant deci-
mals) with those of our method A. This coincidence of results clearly
demonstrates the efficiency and high accuracy of the proposed algo-
rithms in studying higher order modes.

The algorithms proposed here may be also used to obtain the modal
current densities on the strip with high accuracy. To this end, one has to
solve the homogeneous systems of (5) (method A) or (16) (method B)
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TABLE I
EFFECTIVE DIELECTRIC CONSTANT OF ANOPEN MICROSTRIPLINE, AS OBTAINED BY METHODSA AND B, AND COMPARISON WITH [7]–[10]

Fig. 2. Effective dielectric constant versus normalized frequency for a shielded
microstrip line ( ———: this paper , : [11]).

Fig. 3. Modal currents of the first mode of an open microstrip line.

on the basis of the singular-value decomposition method. Typical re-
sults are plotted in Fig. 3 in connection with the first mode of the open
microstrip line shown in the inset. These results are indistinguishable
from those of [9] providing a further validity test of the developed nu-
merical code.

TABLE II
�=k FOR THEFUNDAMENTAL AND FIRST TWO HIGHER MODES OF ANOPEN

MICROSTRIPLINE WHEN 2w = 3 mm,d = 0:635 mm,AND " = 9:8

Concerning the third (higher order) mode of Table II forf =

30 GHz (�=k0 = 1:404470), Fig. 4 showsZ0Jz (dotted line) and
Z0Jx (solid line) versusx=w (Z0 = �0="0). These curves have
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Fig. 4. Modal currents of the third mode of Table II forf = 30GHz (�=k =

1:404470).

been derived by using method A and reproduced exactly by method
B as well. As a further test of the correctness of these results, we
also derived analogous curves pertaining to the modified microstrip
line (labeled “MS”), with conducting sidewalls, referred to earlier in
connection with Table II. As a matter of fact, the curves pertaining to
this modified structure were found to be indistinguishable from those
obtained earlier by methods A and B.

V. CONCLUSION

Two independent DSIETs have been used for the exact full-wave
analysis of layered microstrip lines. The proposed algorithms combine
the simplicity of conventional MoMs with extremely high accuracy
both for the propagation constants and modal currents on the strip. In
filling up the matrix elements, only rapidly converging real-axis spec-
tral integrals are encountered.
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MIM Shunt-Capacitor Model Using Black Boxes of
EM-Simulated Critical Parts

Gregor Gerhard and Stefan Koch

Abstract—A new model for metal–insulator–metal shunt capacitors is
introduced in this paper. The main difference between the new model and
known models is that critical parts of the capacitor’s geometry are repre-
sented by black boxes. These boxes contain-parameter files generated
with an electromagnetic field solver. The capacitor parts, which depend on
the capacitance value, are represented by microstrip and lumped elements.
The new model combines the advantages of field simulations with those of
lumped- or microstrip-based models. It can easily be used in circuit simu-
lators utilizing their features for design development such as optimizations.
The model is compared with two shunt capacitors on microwave monolithic
integrated circuits to show the excellent fit.

Index Terms—Capacitor, EM simulation, MIM, model.

I. INTRODUCTION

Metal–insulator–metal (MIM) shunt capacitors are key elements in
many microwave and millimeter-wave monolithic integrated circuits
(MMICs). DC blocks, matching sections, and biasing circuitry widely
utilize this component because of its small space requirement. An ac-
curate model of the structure is, therefore, crucial for any MMIC de-
sign. Many monolithic foundries have developed their own proprietary
models by means of parameter-extraction methods from experimental
data. Other approaches, closer to the physical structure of the MIM
capacitor, have been previously presented for series MIM capacitors,
resulting in a distributed [1] or lumped [2] equivalent model. Other
models calculate the equivalent-circuit parameters with complex for-
mulas based onS-parameter matrices to consider several layout cases
[3]. More universal models, as in [4], naturally show less accuracy than
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